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A b s t r a c t - - W e  present a new central scheme for approximating solutions of two-dimensional sys- 
tems of hyperbolic conservation laws. This method is based on a modification of the staggered grid 
proposed in [1] which prevents the crossings of discontinuities in the normal direction, while retaining 
the simplicity of the central framework. Our method satisfies a local maximum principle which is 
based on a more compact stencil. Unlike the previous method, it enables a natural extension to 
adaptive methods on structured grids. (~ 1999 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

In [1], J iang and Tadmor  presented a second-order two-dimensional central scheme for approxi- 

mat ing  solutions of systems of hyperbolic conservation laws which extends the one-dimensional 
Nessyahu-Tadmor (NT) scheme, see [2]. A similar approach was taken by Arminjon, et al. in [3,4]. 

Following the central framework whose prototype is the Lax and Friedrichs scheme [5], a 
Godunov- type  scheme was constructed. First, a piecewise-linear MUSCL-type [6] interpolant 
was reconstructed from the given cell-averages. Spurious oscillations in the reconstruction were 
avoided by implementing a nonlinear limiting mechanism [7l. This interpolant was then evolved 
exact ly  in t ime and finally projected on its staggered cell-averages. Due to the staggering, there 
was no need to solve two-dimensional Riemann problems. Unfortunately, the staggering was not 
sufficient to eliminate the discontinuities from the problem, and one was actually left with one- 
dimensional Riemann problems in the normal direction. In the method proposed in [1], instead 
of explicitly solving these 1D Riemann problems, the values around the discontinuities were 

averaged. The  dissipative t rea tment  of those discontinuities in the normal direction resulted in 
several numerical consequences such as smearing of the discontinuities as evident in the numerical 

results presented in [1]. 
In this work, we present a new central scheme which was designed to avoid the crossings of 

discontinuities in the normal direction. Our goal is obtained by exchanging the original staggered 
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mesh with an alternative rotated and stretched mesh. All that follows, is a direct implementation 
of the previously designed methods with our new meshes. This new structured mesh can be viewed 
as a degenerate version of the unstructured mesh used in [8]. 

Along with the main advantage of our new method, several byproducts are in hand. First, the 
method in [1] when viewed in every two time steps consisted of a 9-point stencil. Our method, 
however, is based on a more compact 5-point stencil. Moreover, unlike the method in [1], our 
new method can be easily extended to adaptive central schemes which are based on structured 
staggered grids. Such an extension seems to be highly nontrivial in the previous framework. 

This paper is organized as follows. We start in Section 2 by presenting our new central method. 
The simplicity compared with an adaptive unstructured framework is emphasized by the explicit 
formulation of the method outlined below. We then proceed in Section 3 to formuIate and prove 
a maximum principle on the scheme. We end in Section 4 with several numerical examples. 

2. THE 2D METHOD 

We consider the two-dimensional system of conservation laws 

~,+/(v)~+~(v)~=o, (2.1) 

augmented with the initial data, v0(x, y ) =  v(x, y, t = 0). To approximate solutions of (2.1), we 
first introduce a uniform rectangular mesh in the (x, y) plane, with spacings taken as Ax,  Ay. 
On top of this mesh, we then build a staggered mesh, whose cells are of the shape of diamonds, 
consult Figure la. 
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(a) The staggered mesh. Solid lines--rectangular grid. Dotted lines--diamond- 
shaped grid. 
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(b) A structured adaptive grid. 

Figure 1. 

By  ~ and ~/~, we denote the rectangular cells and the diamond cells, respectively. The resulting 
meshes are, therefore, abbreviated as f~ = (Ji ~ i  and ~ = (Ji ~i-  For simplicity of notations, 
we use a fixed time-step At, and denote the discrete time by t n = nAt .  By f i~ ,  we denote 
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Figure 2. Reconstruction: (a) squares from diamonds, (b) and (c) diamonds from 
squares. 

an approximation to the cell-average ~n in cell Q~ and at time t n. In the first phase of the Ni 
~n+l In the second phase, staggering, we assume that ~n are given and we wish to compute ~, . 

the roles of ~ and ~ are exchanged. 
The reconstruction of our Godunov-type second-order method starts by reconstructing a piece- 

wise-linear interpolant from the given cell-averages 

u(x, y, t n ) = E Pi(x, y, tn)xS,.  (2.2) 

Here, X~, denoted the characteristic function of the cell ~i  while Pi is a linear polynomial 

where the center of (~i is denoted by (xc,, yc~ ), and u~,, u~,, are the discrete slopes in the x- and 
y-directions, respectively, u~, ~ A x.ux( xc, , yc, , t" ) +O(  Ax)  2, u~, ~ Ay.u~( Xc, , Yc,, t'~ ) + O (  Ay) 2. 
The reconstruction of the slopes utilizes nonlinear limiters described in the remarks below. 



92 T. KATSAOUNIS AND D. LEVY 

An exact evolution of (2.2) followed by a projection on its staggered cell-averages results with 
(consult Figure 2a) 

= fz  + gu dx dy dr := 2:1 + 22. (2.3) 
a, ua,  lad , , 

The first term of the RHS of (2.3), 2:1, equals 

2:1 : un ,-n = fib + f~. +4 f~ + f ~  + 1 [Ax (U~v - u~) + Ay (u h - u~)] 

The integrals over the fluxes in the second term of the RHS of (2.3), 2:2, are approximated by a 
second-order midpoint quadrature rule, an approximation which is valid as long as it is done in 
a smooth region. The smoothness requirement results with a CFL condition on the stability of 
the method which due to geometric consideration equals 1/4 (compared with 1/2 in [1D. This 
quadrature can be then explicitly written as 

. . :  [,  ( . r  - s - .  [g - g  ( , r . , ) ] ,  

where A = A t / A x  and Iz = A t / A y  are the usual fixed mesh ratios. The values at time t "+1/2 
required in (2.4) are predicted using a first-order Taylor expansion (which is sufficient for over- 
all second-order accuracy due to the predictor-corrector structure of the method). Hence, for 

example, u~ +1/2 = f~. - (A/2)f(uE)'  - (#/2)g(UE)', and analogously for the other intermediate 
values. 

In the second phase of the staggering, we assume that the values, f~  are known and we wish 
to compute f~+l. In order to simplify the notations, we again advance in time from time t" 
to t n+l. The computation is analogous to the first phase, only this time due to the lack of 
symmetry between the two phases of the staggering, the resulting formulas are different. Here, 
there are two possibilities which are schematically drawn in Figures 2b and 2c. For both cases, an 
exact evolution in time of our reconstruction, u(x, y, t n) = ~]n, Pi(x, y, tn)xn, ,  yields (compare 
with (2.3)), 

°,+,_-°,  lI:-If £ I£] fl, n, i~i[ , fx q- ,g~ dzdydT  :=I1-)-2:2. (2.5) 

We start with the case described in Figure 2b. Here, 2:1 = tin = (f~v + f ~ / 2 ) +  (Ax/6)(U~v-u~.), 
and 

[ { n+l/2~ { n+l/2~ ] (2.6) 

o~fh 

. ))+1/2 The midvalues, uo~(~ ~ , required in (2.6) are once again predicted by Taylor expansion 

= _ - -  ,~  , ( a ~ , )  .u '  . .+ : , ,  o ,,, ,o o o,] ~o~fi( u°~ fi~ 2 

where 0 ~ i  represents the center of the edges of the diamond cells, j = {NE, SE, NW, ST}  
(see Figure 2b). Here, :DUNE = :DUsE = :DUE and :DUNW = :DUST = :DUw, with l) denoting 
the discrete derivative either in the x- or in the y-direction. The point-values, uz~6.n, are also 

computed by a Taylor expansion, e.g., u ~ .  = u~ - (Ax/4)UtE + (Ay/4)u'~. 
Analogous computations hold for the last case described in Figure 2c. For the sake of brevity, 

we list only the first term on the RHS of (2.5), 2;1, which in this case equals 2;1 = fn  = 
( f ~  + ~ / 2 )  + ( A y / 6 ) ( ~ h  - ~). 
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REMARKS. 

1. Reconstruction of the Derivatives. A reconstruction of the derivatives without creating 
spurious oscillations requires nonlinear built-in limiters. One can use, for example, for the 
x-derivative in a rectangular cell (j, k), a limiting on the right/centered/left derivatives 

{ } u~ ' ,k=MM O(fZ2+l,k--Uj,k),~(Uj+x,k--U~_l,a),O(f~,k--fZ~_l,a) , (2.7) 

with 1 < 0 < 2, and 

{ mini{ui}, i fvi  > 0, Vi, 

MM { u l , u 2 , . . . }  = ma~{ui} ,  if vi < 0, Vi, 

0, otherwise. 

The choice of 0 = 1 agrees with the classical Min-Mod limiter (see [1,7] for more details). 
Analogous expression holds for the y-derivative. The same routine is repeated for the 
derivatives in the diamond cells. Only this time, since the cells are not aligned with the 
axes, one has to limit the derivatives after projecting them on the x and y directions. For 
systems, the derivatives are computed component-wise, i.e., f~,a = fu(uj,a)u~,k, where u~.,k 
are given by (2.7), consult [1,2]. 

2. Adaptive Mesh. A possible extension of the method to adaptive method on unstructured 
meshes is demonstrated in Figure lb.  An equivalent extension with the previous method 
in [1] seems to be impossible, at least without dealing with complicated cases at the 
boundaries (corners, etc.) and with uneven divisions of the cells. Our method formulated 
on the new mesh requires no special corner treatment.  We consider this to be the great 
advantage of our method over the other available structured 2D methods. Moreover, since 
there is no upwinding involved, none of the reflected-waves problems which are typical to 
upwinding methods on adaptive structured meshes should appear. 

3. Efficient Implementation. We note tha t  the simplicity of the scheme can be directly 
projected onto its implementation. It is unnecessary to use the standard methods of the 
unstructured framework in order to implement our method. The simplest data  structure 
to store the values in the diamonds would be to divide them into triangles and to store 
the values in the triangles in a two-dimensional array, such that  every point in the array 
corresponds to the rectangle which these triangles belong to. In fact, the values of only 
two triangles out of four in each rectangle should be stored, as the values of the other two 
can be retrieved from the neighboring cells. 

3. A M A X I M U M  P R I N C I P L E  F O R  S C A L A R  A P P R O X I M A T I O N S  

An equivalent maximum principle to Theorem 1 in [1] implies to our new scheme. Since our 
scheme is nonsymmetric between the two phases of the staggering, it is natural  to formulate 
the theorem in a nonstaggered version by considering two joint time-steps. This results with a 
local bound on the cell-averages based on values taken from a 5-point stencil. An equivalent two 
time-steps formulation of Theorem 1 in [1] would be based on a 9-point stencil. 

THEOREM 3.1. Consider the two-dimensional scalar scheme (2.3),(2.5). Assume that the discrete 
slopes satisfy the limiter property (2.7). Then for any 1 _< 8 < 2, there exists a sutticiently small 
CFL number Co, such that if the following CFL condition is fulfilled, 

max (A. muaxlfu(u)hl~, muaxlgu(u)l ) < Co, 

then the following local maximum principle holds: 

m , n  --< <_ m a x  - n  

The  proof of Theorem 3.1 is analogous to the proof of [1, Theorem 1] and we omit it for brevity. 
The key observation for the proof is tha t  every new staggered cell average can be writ ten as a 
convex combination of sums and differences of the cell-averages in the supporting cells. 
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4. N U M E R I C A L  E X A M P L E S  

In Table 1, we present the L1 and Loo errors and convergence rate estimates for the linear 
oblique advection vt + vx + vy = 0 subject to v0 = sin(lr(x + y)). Equal spacings were used, 
A x  ---- A y  = 1IN.  The CFL was taken as 0.2 and the time T -- 0.5. We used the MM limiter 
with ~ -- 1. These results are indeed comparable with those presented in [1, Table 4.1]. 

We end by presenting an example demonstrating the nonosciUatory behavior of our method. 
In Figure 3, we show the results obtained for the periodic two-dimensional Burgers' equation, 
vt + vvx + vvy = 0 in [-1, 1] x [-1, 1], for time T = 0.5, subject to the initial conditions, 

-1.0, x<0,y<0,  { 0.8, x<0,y>0,  
v o ( x , y ) =  -0.2,  x > 0 , y < 0 ,  V o ( x , y ) =  0.5, x > 0 , y > 0 .  

The label JT  refers to the method of [1]. The contour plots in Figure 3 are zoomed into [0, 1] x 
[-1, 0]. Clearly, our method handles better 'diagonal' waves compared with the method of [1], 
while less smearing the discontinuities (compare the results of both methods for the same CFL). 

Table  1. Linear  obl ique advect ion.  L1 and  Loo errors and  convergence  rates .  

N 

20 

40 

80 

160 

320 

L1 Error  L1 Order  Lc¢ Error  Lc¢ Order  

0.334716 - 0.120738 - 

0.020296 4.04 0.023076 2.39 

0.005177 1.97 0.009852 1.23 

0.001661 1.64 0.004155 1.25 

0.000698 1.25 0.001740 1.26 
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(a) JT ,  CFL--0 .4 .  

F igure  3. Periodic 2D-burgers .  N = 160. 
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(b) JT,  CFL=0.2. 
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(c) The new method, CFL=0.2. 

Figure 3 (cont.) 
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